343
CRISPR/Cas and Its Potentiality as an Effective Tool
Liu, F., Huang, N., Wang, L., Ling, H., Sun, T., Ahmad, W., et al., (2017). A novel L-ascorbate
peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to
biotic and abiotic stresses in sugarcane. Frontiers in Plant Science, 8, 2262. doi: 10.3389/
fpls.2017.02262.
Lobell, D. B., & Gourdji, S. M., (2012). The influence of climate change on global crop
productivity. Plant Physiol., 160(4), 1686–1697. https://doi.org/10.1104/pp.112.20829 8.
Lou, D., Wang, H., Liang, G., & Yu, D., (2017). OsSAPK2 confers abscisic acid sensitivity
and tolerance to drought stress in rice. Front Plant Sci., 8, 993.
Ma, Y., Dai, X., Xu, Y., Luo, W., Zheng, X., Zeng, D., Pan, Y., Lin, X., Liu, H., Zhang, D., et
al., (2015). COLD1 confers chilling tolerance in rice. Cell, 160(6), 1209–1221. 10.1016/j.
cell.2015.01.046.
Macovei, A., Sevilla, N. R., Cantos, C., Jonson, G. B., Slamet-Loedin, I., ˇCermák, T., Voytas,
D. F., et al., (2018). Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted
mutagenesis confer resistance to rice tungro spherical virus. Plant Biotechnol. J., 16,
918–1927.
Makarova, K. S., Wolf, Y. I., & Koonin, E. V., (2013). The basic building blocks and
evolution of CRISPR–Cas systems. Biochem. Soc. Trans., 41, 1392–1400. doi: 10.1042/
BST20130038.
Makarova, K. S., Wolf, Y. I., & Koonin, E. V., (2018). Classification and nomenclature
of CRISPR-Cas systems: Where from here? CRISPR J., 1, 325–336. doi: 10.1089/
crispr.2018.0033.
Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A., Alkhnbashi, O. S., Brouns, S. J.
J., Charpentier, E., Cheng, D., Haft, D. H., Horvath, P., et al., (2020). Evolutionary
classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat. Rev.
Microbiol., 18, 67–83. https://doi.org/10.1038/s41579-019-0299-x.
Makarova, K., Wolf, Y., Alkhnbashi, O., et al., (2015). An updated evolutionary classification
of CRISPR–Cas systems. Nat. Rev. Microbiol., 13, 722–736 https://doi.org/10.1038/
nrmicro3569.
Malnoy, M., Viola, R., Jung, M. H., Koo, O. J., Kim, S., Kim, J. S., Velasco, R., & Nagamangala,
K. C., (2016). DNA-free genetically edited grapevine and apple protoplast using CRISPR/
Cas9 ribonucleoproteins. Front. Plant Sci., 7, 1904.
Maron, L. G., Guimarães, C. T., Kirst, M., Albert, P. S., Birchler, J. A., Bradbury, P. J., Buckler,
E. S., Coluccio, A. E., Danilova, T. V., Kudrna, D., Magalhaes, J. V., et al., (2013). Aluminum
tolerance in maize is associated with higher MATE1 gene copy number. Proceedings of the
National Academy of Sciences, 110(13), 5241–5246. doi: 10.1073/pnas.1220766110.
Marraffini, L. A., & Sontheimer, E. J., (2010). CRISPR interference: RNA-directed adaptive
immunity in bacteria and archaea. Nat. Rev. Genet., 11, 181–190. https://doi.org/10.1038/
nrg27 49.
Meng, X., Hu, X., Liu, Q., Song, X., Gao, C., Li, J., et al., (2018). Robust genome editing
of CRISPR-Cas9 at NAG PAMs in rice. Sci. China Life Sci., 61, 122–125. https: //doi.
org/10.1007/s1142 7-017-9247-9.
Miao, H., Sun, P., Liu, Q., Miao, Y., Liu, J., Xu, B., et al., (2017b). The AGPase family proteins
in banana: Genome wide identification, phylogeny, and expression analyses reveal their
involvement in the development, ripening, and abiotic/biotic stress responses. International
Journal Molecular Science, 18(8), 1581. doi: 10.3390/ijms18081581.